- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001100001000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Ravindran, Balaraman (3)
-
Parthasarathy, Srinivasan (2)
-
Batra, Rohit (1)
-
Current, Sean (1)
-
Fang, Fei (1)
-
Goswami, Diganta (1)
-
Gupta, Abhor (1)
-
Lenin, Barathi (1)
-
Milani, Stephanie (1)
-
Mitra, Anasua (1)
-
Raman, Karthik (1)
-
Sanasam, Ranbir (1)
-
Venugopal, Aravind (1)
-
Vijayan, Priyesh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Venugopal, Aravind; Milani, Stephanie; Fang, Fei; Ravindran, Balaraman (, AAMAS '24: Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems)
-
Mitra, Anasua; Vijayan, Priyesh; Sanasam, Ranbir; Goswami, Diganta; Parthasarathy, Srinivasan; Ravindran, Balaraman (, ACM SIGKDD Conference)null (Ed.)Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations, each relation representing a distinct layer. Such graphs are used to investigate many complex biological, social, and technological systems. In this work, we present a novel semi-supervised approach for structure-aware representation learning on multiplex networks. Our approach relies on maximizing the mutual information between local node-wise patch representations and label correlated structure-aware global graph representations to model the nodes and cluster structures jointly. Specifically, it leverages a novel cluster-aware, node-contextualized global graph summary generation strategy for effective joint-modeling of node and cluster representations across the layers of a multiplex network. Empirically, we demonstrate that the proposed architecture outperforms state-of-the-art methods in a range of tasks: classification, clustering, visualization, and similarity search on seven real-world multiplex networks for various experiment settings.more » « less
An official website of the United States government

Full Text Available